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Abstract

Mathematical steps leading to computation of the temperature field in multi-dimensional, multi-layer bodies are

described and numerical results for two-layer bodies are presented. The presentations include boundary conditions of

the first, second, and third kind. Included in this paper is a table to assist in computing eigenvalues. Also, modifications

are made to account for the contribution of contact resistance. An efficient computational scheme for calculating the

eigenvalues is discussed and numerical results are presented. For multi-dimensional, multi-layer bodies, the eigen-

functions may have real or imaginary eigenvalues. The complete solution must include the contribution of imaginary

eigenvalues; otherwise, the information will be erroneous. A procedure is introduced that places a bound on the lo-

cation of each eigenvalue. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Although most industrial problems in transient heat

conduction are solved using approximate numerical

methods, the need exists for exact solutions. One of

these needed areas is in three-dimensional composite

layers. Analytical solutions can provide insight into the

behavior of the temperature and heat flux distributions

that are more difficult to obtain from the numerical

solutions. Perhaps even more important are the emerg-

ing fields of verification and validation. Verification re-

fers to the accurate solution of the known describing

equations of a process; usually these are partial differ-

ential equations. In validation, the emphasis is upon

determining if the prescribed equations actually describe

the physical process being modeled. This paper is in-

tended to provide exact analytical solutions for verifi-

cation of some large numerical codes modeling fires and

other complex processes. It is part of a larger study at

Sandia National Laboratories. The problem considered

herein is for the two-layer heat conduction problem in a

parallelepiped.

Many of the earlier studies address thermal conduc-

tion in one-dimensional, multi-layer bodies. A literature

survey revealed several works on analytical solutions of

heat conduction problems in composite media. A one-

dimensional orthogonal expansion for a composite me-

dium was developed by Tittle [1]. Padovan [2] developed

a generalized Sturm–Liouville procedure for composite

and anisotropic domains in transient heat conduction

problems. The integral transform technique as applied

to the solution of heat conduction problems in com-

posite media is included in [3, Chapter 14]. Salt [4,5]

examined the transient temperature solution in a two-

dimensional, isotropic-composite slab. Mikhailov and

Ozisik [6] analyzed the three-dimensional form of the

problem published by Salt [4]. Yan et al. [7] worked on

exact series solutions for three-dimensional temperature

distributions in two-layer bodies subject to various types

of boundary conditions. The numerical steps leading to

one-dimensional temperature solutions in a two-layer

body is reported in [8]. In general, basic steps leading to

computation of temperature are widely available in the
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literature [3]. For the purpose of parameter estimation,

Aviles-Ramos et al. [9] use a two-dimensional, two-layer

solution with prescribed heat flux over all surfaces and

report that it is necessary to retain all eigenvalues, real

or imaginary, to satisfy the completeness criterion of the

solution.

Computation of temperature in multi-dimensional,

multi-layer bodies exhibits a few features that are not

commonly observed when computing the temperature in

homogeneous bodies. As stated in [9], the eigenvalues

may become imaginary and, therefore, the correspond-

ing eigenfunctions will have imaginary arguments. Also,

care must be exercised when computing the eigenvalues

since the spacing between successive eigenvalues changes

between zero and a maximum value. This work includes

a procedure to target a band within which only one ei-

genvalue will be located as reported in [10] and a hybrid

root finding scheme [10] is then used to rapidly compute

the numerical value of that specific eigenvalue with a

desired accuracy. The imaginary eigenvalues can pro-

duce numerical instability as the number of terms in a

series solution becomes large.

The temperature solutions presented in this paper are

Green’s function types of solutions. Tables are provided

to assist in the formulation of Green’s function solutions

depending on the specific boundary conditions. The

solutions obtained are equally valid when each layer has

orthotropic properties. Also, the eigenfunctions and ei-

genconditions are modified to account for the contri-

bution of contact resistance between layers.

2. Mathematical formulation

To describe the mathematical formulations, consid-

eration is given to a three-dimensional, two-layer body

depicted in Fig. 1. Analytical derivation for a tempera-

ture solution in a two-layer body is described. The two

layers may be isotropic or orthotropic. The diffusion

equation for the orthotropic Region 1 is

k1x
o2T1
ox2

þ k1y
o2T1
oy2

þ k1z
o2T1
oz2

¼ q1cp1
oT1
ot

when 0 < y < b;

ð1aÞ

Nomenclature

a; b; c; d dimensions in Fig. 1 (cm)

A;B constants, Region 1

Amn Fourier coefficients

Bi1 h1b=k1y in Region 1

Bi2 h2ðc� bÞ=k2y in Region 2

Bib 1=Rb
C;D constants, Region 2

cpi specific heat in Region i (J/kg K)

f ðkÞ a function of eigenvalue, k
F1; F2 see Eqs. (19a) and (19b)

Fo Fourier number (¼ a1t=b2)
gi volumetric heat source in region i (W=cm3)

Gij Green’s function

i; j indices

kix thermal conductivity in Region i along x

(W/cm K)

kiy thermal conductivity in Region i along y

(W/cm K)

kiz thermal conductivity in Region i along y

(W/cm K)

m; n indices in eigenfunctions

Nx;m norms for x-direction

Ny;mnp norms for y-direction

Nz;n norms for z-direction

q heat flux (W=m2)

ri ðkix=kiyÞ1=2
R contact resistance (m2 K=W)

Rb Rk1y=b

Rc Rk2y=ðc� bÞ
si

ffiffiffiffiffiffiffiffiffiffiffiffi
kiz=kiy

p
t time (s)

Ti temperature in Regions i (K)

Uðx; tÞ auxiliary function in Example 1

V ;W functions in Example 2

x; y; z coordinates (cm)

X eigenfunction in x-direction

Y eigenfunction in y-direction

Z eigenfunction in z-direction

Greek symbols

a1y k1y=q1cp1, thermal diffusivity in

Region 1 (cm2=s)
a2y k2y=q2cp2 thermal diffusivity in

Region 2 (cm2=s)
bm eigenvalue for x-direction (cm�1)

cmnp eigenvalue for y-direction in

Region 1 (cm�1)

CðtÞ a function in solution for t

e deviation, see Eq. (36)

gmnp eigenvalue for y-direction in

Region 2 (cm�1)

kmnp eigenvalue for time (s�1)

mn eigenvalue for z-direction (cm�1)

qi density of regions i (kg=cm3)

s time variable (s)

U a function in Example 1

W see Eq. (39b)
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and in the orthotropic Region 2 is

k2x
o2T2
ox2

þ k2y
o2T2
oy2

þ k2z
o2T2
oz2

¼ q2cp2
oT2
ot

when b < y < c:

ð1bÞ

2.1. Separation of variables

Assuming boundary conditions are homogeneous,

one can propose solutions of the forms

T1ðx; y; z; tÞ ¼ X1ðxÞY1ðyÞZ1ðzÞC1ðtÞ ðin Region 1Þ
ð2aÞ

and

T2ðx; y; z; tÞ ¼ X2ðxÞY2ðyÞZ2ðzÞC2ðtÞ ðin Region 2Þ
ð2bÞ

satisfying the following conditions:

X 00
1 =X1 ¼ X 00

2 =X2 ¼ �b2; ð3aÞ

Z 00
1=Z1 ¼ Z 00

2=Z2 ¼ �m2; ð3bÞ

C0
1=C1 ¼ C0

2=C2 ¼ �k2; ð3cÞ

where b, m, and k are constants depending on the specific

type of homogeneous boundary conditions. Differential

equations for Y1 and Y2 can be obtained following sub-

stitution of T1 and T2 in the appropriate forms of the

diffusion equation:

� k1xb
2 þ k1yY 00

1 =Y1 � k1zm2 ¼ q1cp1ð�k2Þ;
� k2xb

2 þ k2yY 00
2 =Y2 � k2zm2 ¼ q2cp2ð�k2Þ;

ð4Þ

that yield

Y 00
1

Y1
¼ � k2

a1y
þ k1x
k1y

b2 þ k1z
k1y

m2 ¼ �c2;

Y 00
2

Y2
¼ � k2

a2y
þ k2x
k2y

b2 þ k2z
k2y

m2 ¼ �g2;

ð5Þ

where a1y ¼ k1y=q1cp1, a2y ¼ k2y=q2cp2, ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kix=kiy

p
, and

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kiz=kiy

p
for i ¼ 1 or 2. The values of c and k are

related to k by the relations

c2 ¼ k2=a1y � ðr21b
2 þ s21m

2Þ; ð6aÞ

g2 ¼ k2=a2y � ðr22b
2 þ s22m

2Þ: ð6bÞ

The temperature solutions T1 and T2, after replacing X

by Xm, Z by Zn, and Y by Ymnp, leads to classical Fourier

series solutions that take the following forms:

T1 ¼
X1
p¼1

X1
m¼1

X1
n¼1

AmnpXmðbmxÞZnðmnzÞY1;mnpðcmnpyÞ

� expð�k2
mnptÞ; ð7aÞ

T2 ¼
X1
p¼1

X1
m¼1

X1
n¼1

AmnpXmðbmxÞZnðmnzÞY2;mnpðgmnpyÞ

� expð�k2
mnptÞ: ð7bÞ

The compatibility conditions are

T1jy¼b þ Rk1yoT1=oyjy¼b ¼ T2jy¼b; ð8aÞ

k1yoT1=oyjy¼b ¼ k2yoT2=oyjy¼b; ð8bÞ

where R represents the contact resistance between the

layers. This solution accepts the classical functions for

Xm and Zn subject to boundary conditions of the first

kind and second kind in the x- and z-directions. It is to

be emphasized that, for the x- and z-directions, only

boundary conditions of the first kind and second kind

are unconditionally admissible. However, at y ¼ 0 and

at y ¼ c, a boundary condition can be of the first, sec-

ond, or third kind. For the sake of generality, the so-

lution is cast in the form of a Green’s function solution.

3. Green’s function solution

In general, for all boundary conditions, Green’s

function using identities given in Beck et al. [11, Eqs.

(10.56), (10.58), (10.68)], reduces to

Gijðx;y;z;tjx0;y0;z0;sÞ

¼
X1
p¼1

X1
m¼1

X1
n¼1

qjcpjXmðxÞXmðxÞZnðzÞZnðzÞYi;mnpðyÞYj;mnpðy0Þ
Nx;mNy;mnpNz;n

�expb�k2
nnpðt�sÞc; ð9Þ

where i ¼ 1; 2; . . . ;M ; and j ¼ 1; 2; . . . ;M , whileM is the

number of regions in the body. Eq. (9) describes the

effect in region i due a pulse that appears at time s in

region j. The norms Nx;m, Nz;n, and Ny;mnp are

Nx;m ¼
Z a

0

½XmðxÞ
2 dx; ð10Þ

Fig. 1. Schematic of a three-dimensional two-layer body.
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Nz;n ¼
Z d

0

½ZnðzÞ
2 dz; ð11Þ

Ny;mnp ¼
Z b

0

q1cp1½Y1;mnpðyÞ

2
dy þ

Z c

b
q2cp2½Y2;mnpðyÞ


2
dy:

ð12Þ

The Green function solution in Region i is

Tið~rr; tÞ ¼
XM
j¼1

Z
Vj

Gijð~rr; t j~rr0; 0ÞTjð~rr 0; 0ÞdV 0
j

þ
XM
j¼1

Z t

s¼0

ds
Z
Vj

1

qjcpj
Gijð~rr; t j~rr 0; sÞgjð~rr 0; sÞdV 0

j

þ
XM
j¼1

Z t

s¼0

ds
Z
Sj

kj
qjcpj

Gijð~rr; t j~rr 0; sÞ
oT ð~rr 0; sÞ

on

"

� T ð~rr 0; sÞ oGijð~rr; t j~rr 0; sÞ
on

#
S0j

dS 0j; ð13Þ

where dV 0 ¼ dx0 dy0 dz0 and S0j is a surface portion for the

region j in prime space on which a boundary condition is

specified. From this point forward, the computations are

focused toward the solution of a two-layer body, M ¼ 2.

There are nine specific solutions depending on the

boundary conditions over y ¼ 0 and y ¼ c surfaces. All

nine solutions can be obtained from a solution that uses

boundary conditions of the third kind over y ¼ 0 and

y ¼ c surfaces.

As stated earlier, the contributions of Eqs. (3a) and

(3b) to the temperature solution are limited to boundary

conditions of the first kind and the second kind. The

contribution of these boundary conditions over x ¼ 0; a
and z ¼ 0; d surfaces are obtainable in a standard

manner. The main task is to determine the solutions for

Y1 and Y2 using Eq. (5). It is assumed that if the surfaces

at y ¼ 0 and y ¼ c are exposed to boundary conditions

of the third kind; other linear boundary conditions can

be deduced from that solution.

The solutions for Y1 and Y2, as given by Eq. (5) are

Y1 ¼ A cosðcyÞ þ B sinðcyÞ; ð14aÞ

Y2 ¼ C cosðgyÞ þ D sinðgyÞ: ð14bÞ

Eq. (14a) must satisfy the following condition at y ¼ 0:

k1y
oY1
oy y¼0

��� ¼ h1Y1 y¼0

��� : ð15Þ

After substituting for Y1 and oY1=oy, one obtains

A ¼ k1yBc
h1

or B ¼ h1
k1y

� 	
A: ð16Þ

Next, one must satisfy the compatibility conditions at

y ¼ b, Eqs. (8a) and (8b), that is,

Y1 ¼
k1yBc
h1

cosðcyÞ þ B sinðcyÞ

¼ B
k1yc
h1

cosðcyÞ



þ sinðcyÞ
�
; ð17Þ

C
B

� 	
cosðgbÞ þ D

B

� 	
sinðgbÞ ¼ F1;

� C
B

� 	
sinðgbÞ þ D

B

� 	
cosðgbÞ ¼ F2;

ð18Þ

where

F1 ¼
k1yc
h1

cosðcbÞ þ sinðcbÞ

þ Rk1yc


� k1yc

h1
sinðcbÞ þ cosðcbÞ

�
; ð19aÞ

F2 ¼
k1y
k2y

� 	
c
g

� 	

� k1yc

h1
sinðcbÞ þ cosðcbÞ

�
: ð19bÞ

The solutions for C=B and D=B are

D
B
¼ F1 sinðgbÞ þ F2 cosðgbÞ;

C
B
¼ F1 cosðgbÞ � F2 sinðgbÞ:

ð20Þ

Next, using the boundary condition of the third kind at

y ¼ c,

�k2y
oY2
oy y¼c

��� ¼ h2Y2jy¼c

for Y2 solution, taken from Eq. (14b), results in the re-

lation

�k2y ½ � Cg sinðgyÞ þ D cosðgyÞ

¼ h2 C cosðgyÞ½ þ D sinðgyÞ


or

C
B

sinðgcÞ



� h2
k2yg

cosðgcÞ
�
� D
B

cosðgcÞ



þ h2
k2yg

sinðgcÞ
�

¼ 0: ð21Þ

Replacing C=B and D=B, using Eqs. (19a), (19b), and

(20), and after some algebraic steps, the eigencondition

is

f ðkÞ ¼ h1b
k1y


�
� Rk1y

b
ðcbÞ2

�
sinðcbÞ

cb
þ ð1þ h1RÞ cosðcbÞ




� ½gðc



� bÞ
 sin½gðc� bÞ
 � h2ðc� bÞ
k2y

cos½gðc� bÞ

�

þ c� b
b

� 	
k1y
k2y

� 	
cos½gðc



� bÞ
 þ h2ðc� bÞ
k2y

� sin½gðc� bÞ

gðc� bÞ

�
ðcbÞ sinðcbÞ



� h1b
k1y

cosðcbÞ
�
¼ 0;

ð22Þ

1868 A. Haji-Sheikh, J.V. Beck / International Journal of Heat and Mass Transfer 45 (2002) 1865–1877



where c and g are related to k by Eqs. (6a) and (6b). The

final form of the eigencondition after further simplifi-

cation is

ðh2=k2yÞ � g tan½gðc� bÞ

ðh2=k2yÞ tan½gðc� bÞ
 þ g

¼ � k1y
k2y

� 	
c
g

� 	
h1=k1y � c tanðcbÞ

ðh1=k1y � Rk1yc2Þ tanðcbÞ þ cð1þ Rh1Þ
:

ð23aÞ

One can obtain an alternative form for Eq. (23a) if the

quantity k1yoT1=oy in Eq. (8a) is replace, using Eq. (8b),

by k2yoT2=oy; that is,

ðh2=k2yÞ � g tan½gðc� bÞ

ðh2=k2y � Rk2yg2Þ tan½gðc� bÞ
 þ gð1þ Rh2Þ

¼ � k1y
k2y

� 	
c
g

� 	
h1=k1y � c tanðcbÞ
ðh1=k1yÞ tanðcbÞ þ c

: ð23bÞ

The functions Y1 and Y2, as well as the eigencondi-

tion, Eq. (23a) or (23b), can be extended to include the

effect of boundary conditions of the first kind, as

hi ! 1, and the second kind, as hi ! 0, at surfaces

y ¼ 0 and/or y ¼ c. This task is accomplished and the

coefficients A, B, C, and D needed to construct eigen-

functions are summarized in Table 1(a). Each entry YIJ

refers to the boundary condition of the Ith kind at y ¼ 0

and J th kind at y ¼ c. Therefore, each entry is for a

specific boundary condition at y ¼ 0 and a boundary

condition of the first, second, or third kind at y ¼ c. For
a convective boundary condition at y ¼ 0, the values of

B, C, and D are selected using A ¼ 1. For convenience of

this presentation and subsequent computations, it is

convenient to combine Eqs. (14b), (19a), (19b), and (20)

to get

Y2 ¼ �CC cos½gðy � bÞ
 þ �DD sin½gðy � bÞ
: ð24Þ

The coefficients �CC and �DD that correspond to coefficients

A and B are listed in Table 1(b). The eigencondition, Eq.

(23a) or (23b), is also in a generalized form; it is reduced

for nine different combinations of the boundary condi-

tions of the first, second, and third kinds and is pre-

sented in Table 2. The following notations are used in

Table 2: �cc ¼ cb, �gg ¼ gðc� bÞ, Bi1 ¼ h1b=k1y , Bi2 ¼ h2
ðc� bÞ=k2y , and assuming R to be the contact resistance

for a unit area, Rb ¼ Rk1y=b, Rc ¼ Rk2y=ðc� bÞ.

4. Temperature solution

Following the identification of functions and pa-

rameters in the definition of Green’s function, Eq. (9),

then Eq. (13) provides the temperature solution for a

two-layer body with homogeneous boundary conditions

as

Table 1

Solution coefficients with contact resistance for Y1 ¼ A cosðcyÞ þ B sinðcyÞ

Case A B C D

(a) when Y2 ¼ C cosðgyÞ þ D sinðgyÞ
Y1Ja 0 1 sinðcbÞ cosðgbÞ � ðc=gÞ

� ðk1y=k2yÞ cosðcbÞ sinðgbÞ
þ k1yRc cosðcbÞ cosðgbÞ

sinðcbÞ sinðgbÞ þ ðc=gÞ
� ðk1y=k2yÞ cosðcbÞ cosðgbÞ
þ k1yRc cosðcbÞ sinðgbÞ

Y2J 1 0 cosðcbÞ cosðgbÞ þ ðc=gÞ
� ðk1y=k2yÞ sinðcbÞ sinðgbÞ
� k1yRc sinðcbÞ cosðgbÞ

cosðcbÞ sinðgbÞ � ðc=gÞ
� ðk1y=k2Þ sinðcbÞ cosðgbÞ
� k1yRc sinðcbÞ sinðgbÞ

Y3J 1 h1=k1yc cosðgbÞ½cosðcbÞ þ ðh1=k1ycÞ
� sinðcbÞ
 þ ½k1yRc cosðgbÞ
� ðk1y=k2yÞðc=gÞ sinðgbÞ

� ½ðh1=k1ycÞ cosðcbÞ � ðsinðcbÞ


sinðgbÞ½cosðcbÞ þ ðh1=k1ycÞ
� sinðcbÞ
 þ ½k1yRc sinðgbÞ
þ ðk1y=k2yÞðc=gÞ cosðgbÞ

� ½ðh1=k1ycÞ cosðcbÞ � sinðcbÞ


(b) When Y2 ¼ �CC cos½gðy � bÞ
 þ �DD sin½gðy � bÞ

Y1Ja 0 1 sinðcbÞ þ k1yRc cosðcbÞ ðc=gÞðk1y=k2yÞ cosðcbÞ

Y2J 1 0 cosðcbÞ � k1yRc sinðcbÞ �ðc=gÞðk1y=k2Þ sinðcbÞ

Y3J 1 ðh1=k1ycÞ cosðcbÞ þ h1=ðk1ycÞ sinðcbÞ
þ k1yRc½ðh1=k1ycÞ cosðcbÞ � sinðcbÞ


ðk1y=k2yÞðc=gÞ � ½ðh1=k1ycÞ cosðcbÞ � sinðcbÞ


a J stands for a boundary condition of the first, second, or third kind at y ¼ c.
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Tiðx; y; z; tÞ

¼
X1
p¼1

X1
m¼1

X1
n¼1

XmðxÞZnðzÞYi;mnpðyÞ expð�k2
mnptÞ

Nx;mNy;mnpNz;n

�
Z d

z¼0

Z a

x¼0

Z b

y¼0

q1cp1Y1;mnpðy0ÞT1ðx0; y0; z0;0Þdy0



þ
Z c

y¼b
q2cp2Y2;mnpðy0ÞT2ðx0; y0; z0;0Þdy0

�

�Xmðx0ÞZnðz0Þdx0dz0 þ
X1
p¼1

X1
m¼1

X1
n¼1

XmðxÞZnðzÞYi;mnpðyÞ
Nx;mNy;mnpNz;n

�
Z t

s¼0

exp½�k2
mnpðt� sÞ


�
Z d

z¼0

Z a

x¼0

Z b

y¼0

Y1;mnpðy0Þg1ðx0; y0; z0; sÞdy0



þ
Z c

y¼b
Y2;mnpðy0Þg2ðx0; y0; z0; sÞdy0

�
Xmðx0ÞZnðz0Þdx0dz0ds

ð25Þ

for i ¼ 1 or 2. The functions XmðxÞ, ZnðzÞ are solutions of
the differential equations, given by Eqs. (3a) and (3b),

that are obtainable in a standard manner. Eq. (14a)

yields the function Y1;mnpðyÞ after replacing c by cmnp.
Also, Eq. (24) describes the function Y2;mnpðyÞ once g is

replaced by gmnp.
It is instructive to examine the solutions given by Eq.

(25) for multiplicative variations in the initial tempera-

ture and the volumetric energy generation. Let functions

T1ðx; y; z; 0Þ, T2ðx; y; z:0Þ, g1ðx; y; z; tÞ, and g1ðx; y; z; tÞ be

separable and described by

T1ðx; y; z; 0Þ ¼ T10T1xðxÞT1yðyÞT1zðzÞ;

T2ðx; y; z:0Þ ¼ T20T2xðxÞT2yðyÞT2zðzÞ;

g1ðx; y; z; tÞ ¼ g10g1xðxÞg1yðyÞg1zðzÞg1tðtÞ;

g2ðx; y; z; tÞ ¼ g20g2xðxÞg2yðyÞg2tðzÞg2tðtÞ:

Then, the temperature given by Eq. (25) can be written

as

Table 2

Eigenconditions for Y11, Y12, Y13, Y21, Y22, Y23, Y31, Y32, and Y33a

Case Eigencondition

Y11

cotð�ggÞ ¼ � c� b
b

� 	
�cc
�gg

 !
k1y
k2y

� 	 cot �cc
� �

1þ Rb�cc cotð�ccÞ

Y12

tanð�ggÞ ¼ c� b
b

� 	
�cc
�gg

 !
k1y
k2y

� 	 cot �cc
� �

1þ Rb�cc cotð�ccÞ

Y13 �gg tanð�ggÞ � Bi2
ðBi2 � Rc�gg2Þ tanð�ggÞ þ �ggð1þ RcBi2Þ

¼ c� b
b

� 	
�cc
�gg

 !
k1y
k2y

� 	
cotð�ccÞ

Y21
cotð�ggÞ ¼ c� b

b

� 	
�cc
�gg

 !
k1y
k2y

� 	
tanð�ccÞ

1� Rb�cc tanð�ccÞ

Y22
tanð�ggÞ ¼ � c� b

b

� 	
�cc
�gg

 !
k1y
k2y

� 	
tanð�ccÞ

1� Rb�cc tanð�ccÞ

Y23 �gg tanð�ggÞ � Bi2
ðBi2 � Rc�gg2Þ tanð�ggÞ þ �ggð1þ RcBi2Þ

¼ � c� b
b

� 	
�cc
�gg

 !
k1y
k2y

� 	
tanð�ccÞ

Y31
cotð�ggÞ ¼ c� b

b

� 	
�cc
�gg

 !
k1y
k2y

� 	
�cc tanð�ccÞ � Bi1

ðBi1 � Rb�cc2Þ tanð�ccÞ þ �ccð1þ RbBi1Þ

Y32
tan �gg ¼ � c� b

b

� 	
�cc
�gg

 !
k1y
k2y

� 	
�cc tanð�ccÞ � Bi1

ðBi1 � Rb�cc2Þ tanð�ccÞ þ �ccð1þ RbBi1Þ

Y33 �gg tan �gg
� �

� Bi2

Bi2 tanð�ggÞ þ �gg
¼ � c� b

b

� 	
�cc
�gg

 !
k1y
k2y

� 	
�cc tanð�ccÞ � Bi1

ðBi1 � Rb�cc2Þ tanð�ccÞ þ �ccð1þ RbBi1Þ

a The parameters c and g are related by the relations c2 ¼ k2=a1y � ðr21b
2 þ s21m

2Þ and g2 ¼ k2=a2y � ðr22b
2 þ s22m

2Þ where ri ¼ ðkix=kiyÞ1=2,
si ¼ ðkiz=kiyÞ1=2 for i ¼ 1 or 2, and R ¼ contact resistance.Notations: �cc ¼ cb, �gg ¼ gðc� bÞ;Bi1 ¼ h1b=k1y , Bi2 ¼ h2ðc� bÞ=k2y ,
Rb ¼ Rk1y=b, Rc ¼ Rk2y=ðc� bÞ, and R is defined so that ðT1 � T2Þjy¼b=R ¼ �k1yðoT=oyÞjy¼b.
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Tiðx;y;z;tÞ

¼
X1
p¼1

X1
m¼1

X1
n¼1

XmðxÞZnðzÞYi;mnpðyÞexpð�k2
mnptÞ

Nx;mNy;mnpNz;n

� T10q1cp1

Z a

x0¼0

Xmðx0ÞT1xðx0Þdx0
Z b

y0¼0

Y1;mnpðy0Þ



�T1yðy0Þdy0
Z d

z0¼0

Znðz0ÞT1zðz0Þdz0 þT20q2cp2

�
Z a

x0¼0

Xmðx0ÞT2xðx0Þdx0
Z c

y0¼b
Y2;mnpðy0ÞT2yðy0Þdy 0

�
Z d

z0¼0

Znðz0ÞT2zðz0Þdz0
�
þ
X1
p¼1

X1
m¼1

X1
n¼1

XmðxÞZnðzÞYi;mnpðyÞ
Nx;mNy;mnpNz;n

�
Z t

s¼0

exp½�k2
mnpðt�sÞ
 g10

Z a

x0¼0

Xmðx0Þg1xðx0Þdx0



�
Z b

y0¼0

Y1;mnpðy0Þg1yðy0Þdy0
Z d

z0¼0

Znðz0Þg1zðz0Þdz0g1tðsÞds

þg20
Z a

x0¼0

Xmðx0Þg2xðx0Þdx0
Z c

y0¼b
Y2;mnpðy0Þg2yðy0Þdy0

�
Z d

z0¼0

Znðz0Þg2zðz0Þdz0g2tðsÞds

�
: ð26Þ

5. Computation of eigenvalues

One basic method of finding eigenvalues is to begin at

the smallest reasonable value for k, that is, at the smaller

of ½a1yðr21b
2 þ s21m

2Þ
1=2 and ½a2yðr22b
2 þ s22m

2Þ
1=2, see Eqs.

(6a) and (6b). Using Eq. (22) with c and g taken from

Eqs. (6a) and (6b), one can march forward, Dk at a time,

searching for the eigenvalues. This method is computa-

tionally slow. Also, it can result in missing eigenvalues

because, as will be shown later, the spacing between

successive eigenvalues can become small, less than Dk. In
practice, it is possible to develop a more efficient scheme.

For each eigenvalue, there are well-defined upper and

lower values for k within which only one eigenvalue is

located. For every entry in Table 2, these limits are the

ordered locations of the asymptotes for the right side and

for the left side of each equation. The asymptotes will be

located where the denominators of the right side and of

the left side of an entry in Table 2 become zero. Between

any two adjacent asymptotes, there is one eigenvalue.

This is demonstrated by using the following quantities

that approximate those in Dowding et al. [12] for an

orthotropic carbon–carbon layer attached to a thin layer

of mica: a ¼ d ¼ 10 cm, b ¼ 0:9 cm, c ¼ 1 cm,

k1x ¼ k1z ¼ 0:5 W=cm K, k1y ¼ 0:1 W=cm, k2x ¼ k2y ¼
k2z ¼ 0:01 W=cm; q1cp1 ¼ 2:6 kJ=cm

3
K, q2cp2¼2:4 kJ=

cm3 K and h1 ¼ h2 ¼ 0. Furthermore, it is assumed

R ¼ 0:45 cm2 K=W, b ¼ 5p=a, and m ¼ 10p=d.
The solid line, labeled as ‘‘right side’’ in Fig. 2(a), is

the right side of entry 9 in Table 2 plotted as a function

of k2. Similarly, the dash line in Fig. 2(a) shows the

variation of the left side of entry 9 in Table 2. The ei-

genvalues are located where the solid line and the dash

Fig. 2. (a)Right side, the solid lines, and left side, the dash lines, of entry 9 in Table 2 and (b) variation of f ðkÞ, Eq. (22), as a function of k2.
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line have the same values. As an alternative scheme, one

can use the zeros of the right side and left side of each

eigencondition entry in Table 2, and between any two

adjacent zeros there is an eigenvalue. Columns 1 and 2 in

Table 3 show the locations of the right side and left side

asymptotes that appear in Fig. 2(a). Each computed

eigenvalue, in column 3, is located between two adjacent

asymptotes. For example k2 ¼ 25:54791 is between

25.54582 in column 1 and 25.75350 in column 2. Fig.

2(b) is plotted to show the zeros of function f ðkÞ, Eq.
(22), as a function of k. This figure demonstrates that the

spacing between neighboring eigenvalues changes and

can become very small; therefore, it is important to

identify a bound on the location of each eigenvalue a

priori. Also, it is possible for the spacing between two

adjacent asymptotes to become zero.

The locations of the asymptotes are the same as the

eigenvalues for individual layers. For example, the as-

ymptotes for the right side of entry 9, in Table 2, are

located when �cc is calculated using the relation

ðBi1 � Rb�cc2Þ tanð�ccÞ þ �ccð1þ RbBi1Þ ¼ 0 ð27aÞ

that, when Rb ¼ 1=Bib, can be written as

ðBi1Bib � �cc2Þ tanð�ccÞ þ �ccðBib þ Bi1Þ ¼ 0: ð27bÞ

This is the same eigencondition for a single layer body

with thickness b, with Biot number Bi1 at y ¼ 0 and Biot

number Bib ¼ 1=Rb at y ¼ b. The asymptotes for the left

side are the roots of equation

Bi2 tanð�ggÞ þ �gg ¼ 0: ð28Þ

This is the eigencondition for a single layer body with

thickness c� b, insulated at y ¼ b and having a Biot

number Bi2 ¼ h2ðc� bÞ=k2y at y ¼ c. The right-side/left-

side asymptotes for other entries in Table 2 are ob-

tainable in a similar manner. The location of these

asymptotes is known using an explicit equation [13].

Once a bound on the location of each eigenvalue is

established, a hybrid computing technique [10] provides

the numerical value of that eigenvalue. The hybrid

computing technique begins by using a bisection

method while simultaneously computing the first and

the second derivatives of function f ðkÞ, Eq. (22), by

central differencing. After f 00=f 0 reduces to below a

prescribed limit, a second-order Newton method yields

the final numerical result. The basic steps for the sec-

ond-order Newton method, as described in [10], are to

calculate f0 ¼ f ðk0Þ, and then f1 ¼ f 0ðk0Þ, and

f2 ¼ f 00ðk0Þ by central differencing. The next value of k,
that is, k1 will be

k1 ¼ k0 �
f0
f1

þ 1

2

f2f 2
0 =f1

f2f0 � f 2
1

: ð29Þ

Typically, 4 to 6 bisection steps and �2 second-order

Newton steps would provide an accurate eigenvalue.

6. Numerical examples

Numerical examples are selected to demonstrate the

scope of this solution method. The first example studies

one-dimensional transient heat conduction and then is

extended to three- dimensional heat conduction in the

second and the third examples. The main emphases in

these examples are to demonstrate the use of the above

analysis and to give insight into efficient computation of

the temperature and heat fluxes.

Example 1. This example is one-dimensional with con-

vection to an ambient temperature of T1 at both ends

and a very large, but of short duration, heat flux at

y ¼ 0. The initial temperature is also equal to T1. The

selected parameters are: b ¼ 0:25 cm, c ¼ 0:5 cm,

k1y ¼ 0:1 W=cm K, k2y ¼ 0:7 W=cm K, h1 ¼ 0:1 W=
cm2 K, h2 ¼ 0:3 W=cm

2
K, q1cp1 ¼ 3 J=cm3 K, and

q2cp2 ¼ 4 J=cm3 K. Region 1 has a lower thermal dif-

fusivity. Perfect contact exists between regions 1 and 2;

see Fig. 1. The entire surface at y¼ 0 is irradiated at the

rate of q1 ¼ 10 kW=cm2 for a duration of to ¼ 1 ms. The

solution is then written, using Eq. (25) for homogeneous

boundary conditions and initial condition while ac-

counting for the surface heat flux by using

g1ðx; tÞ ¼ q1ðtÞdðy � 0Þ in Region 1 by, as

Tiðy; tÞ � T1 ¼
X1
p¼1

Yi;pðyÞ
Np

Z t

s¼0

exp½�k2
pðt � sÞ


�
Z b

y¼0

Y1;pðy0Þq1ðsÞdðy0 � 0Þdy0 ds

¼ q1
X1
p¼1

Yi;pð0ÞYi;pðyÞ
k2
pNp

Upðt; toÞ; ð30aÞ

Table 3

Locations of the eigenvalues and the right-/left-side asymptotes

in Fig. 2

Right side Left side Eigenvalues

– 0.051404a 0.50961

– 1.07950 2.40929

2.43082 – 2.91648

3.01705 – 4.23901

4.44565 – 5.67551

6.79527 – 6.94996

– 9.30416 10.06049

10.07829 – 14.20126

14.29730 – 18.15974

19.45305 – 19.69501

25.54582 – 25.54791

– 25.75350 –

a Starting value.
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where

Upðt; toÞ ¼
1� expð�k2

ptÞ when t6 to;
exp½�k2

pðt � toÞ
 � expð�k2
ptÞ when t > to:

(

ð30bÞ

Expressions for Y1;pðyÞ and Y2;pðyÞ are taken from Eqs.

(14a) and (24) and Y3J entry in Table 1b, as

Y1;pðyÞ ¼ cosðcpyÞ þ
h1
k1ycp

 !
sinðcpyÞ; ð31aÞ

Y2p ¼ �CCp cos½gpðy � bÞ
 þ �DDp sin½gpðy � bÞ
: ð31bÞ

where

�CCp ¼ cosðcpbÞ þ ðh1=k1ycpÞ sinðcpbÞ
þ k1yRcp½ðh1=k1ycpÞ cosðcpbÞ � sinðcpbÞ
 ð32aÞ

�DDp ¼ ðk1y=k2yÞðcp=gpÞ½ðh1=k1ycpÞ cosðcpbÞ
� sinðcpbÞ
 ð32bÞ

The eigenvalues are obtained numerically using the entry

9 in Table 2 after setting b ¼ 0 and m ¼ 0 to get

c2p ¼ k2
p=a1y and g2

p ¼ k2
p=a2y . In one-dimensional prob-

lems, all eigenvalues are real. The computed first six

eigenvalues, k1–k6, are: 0.4661446, 1.477978, 3.381259,

5.001021, 6.148723, and 8.031121. The corresponding

values of the norms, N1–N6, are: 1.855151, 0.5194274,

0.4440894, 0.7692402, 0.5480879, and 0.4300197.

Fig. 3 shows the temperature solution as a function

of the y-coordinate for different times between 0.001 and

10 s. As expected, the convergence is fast when t > to ;

however, when t ¼ 0:001 s, the series solution sufficiently

converges when the number of terms exceeds 1000.

However, at small times, modeling Region 1 as a semi-

infinite body dramatically reduces the number of terms.

Numerical values for the semi-infinite solution and

composite solution with 100 terms are given in Table 4

where the temperature is computed at different times up

to 0.1 s and for different locations from y ¼ 0 to b. Since
iteration is not needed to compute the eigenvalues [13],

they are acquired within a fraction of a second on a

personal computer. The numbers inside parentheses are

the temperatures obtained assuming Region 1 to be a

semi-infinite solid irradiated at y ¼ 0. Since q1 and h1 are
constants, the solution in the semi-infinite region using

the function

Uðy; tÞ ¼ q1
h1

erfc y=
ffiffiffiffiffiffiffiffiffiffi
4a1y t

p� �h
þ expðh1y=k1y þ a1y th21=k

2
1yÞ

� erfc y=
ffiffiffiffiffiffiffiffiffiffi
4a1y t

p�
þ

ffiffiffiffiffiffiffiffi
a1y t

p
h1=k1y

�i
ð33aÞ

taken from 11, Eq. (6.29), and superposition is

T ðy; tÞ � T1 ¼ Uðy; tÞ when t6 to;
Uðy; tÞ � Uðy; t � toÞ when t > to:

�
ð33bÞ

A comparison between the two solutions shows that the

solution for a semi-infinite body departs from a two-

layer solution at, y ¼ b, when t � 0:05 s; this corre-

sponds to a1t=b2 � 0:027. The surface temperature is

very accurately predicted until a dimensionless time 4

times as large, or until 0.2s in this case; the computed

temperature is 20.0143 �C while the two-layer solution

yields 20.0125 �C. Hence if the heated surface tempera-

ture is of primary interest, it can be computed using the

semi-infinite solution given above and then the com-

posite solution thereafter with less than six terms in the

summation. When t ¼ 0:1 s, only six eigenvalues are

needed to provide values within 0.0012 �C at any

Fig. 3. One-dimensional temperature solution for a two-layer body in Example 1.
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location and the accuracy improves as t increases and t
increases.

Example 2. In Example 1, it is shown that the series

convergence is poor when Upðt; toÞ ¼ 1� expð�k2
ptÞ. To

study this effect and the influence of spatial functions,

the transient solution is used to compute temperature

along the y-axis, see Fig. 1, as time becomes large. In this

study, a ¼ d ¼ 1 cm and the surfaces at x ¼ 0, a and

z ¼ 0, d are insulated. It is assumed that all properties

and dimensions are the same as those in Example 1 ex-

cept there is a prescribed uniform heat flux over the

y ¼ 0 surface when 06 x6 a1 and 06 z6 d1. The tem-

perature solution has the following form:

Tiðy; tÞ � T1 ¼ q1
X1
p¼1

X1
m¼1

X1
n¼1

VmðxÞWnðzÞ

�
Yi;pð0ÞYi;pðyÞ½1� expð�k2

ptÞ

k2
pNp

; ð34Þ

wherein the functions VmðxÞ and WnðzÞ are

UmðxÞ ¼
a1=a when m ¼ 0;
2
mp cosðmpx=aÞ sinðmpa1=aÞ when m > 0;

�
ð35aÞ

WnðzÞ ¼
d1=d when n ¼ 0;
2
np cosðnpx=aÞ sinðnpa1=aÞ when n > 0:

�
ð35bÞ

The temperature solution, Eq. (34), approached steady-

state solution as t ! 1. The solid lines in Fig. 4(a) show

the computed near-steady-state data when a1=a ¼ d1=
d ¼ 0:2, 0.5, 0.8, and 1. The discrete data are the stan-

dard one-dimensional steady-state temperature solution.

As expected, when a1=a ¼ d1=d ¼ 1, the corresponding

solid line and the discrete data are nearly identical. The

three-dimensional computations are performed using

maximum values for indices m, n, and p equal to 30, 30,

and 50, respectively.

To demonstrate the convergence rate for the steady-

state case, when a1=a ¼ d1=d ¼ 1, the absolute value of

the deviation of the series solution from the exact solu-

tion, e, is computed and plotted in Fig. 4(b) wherein e is
defined by the relation

e ¼ ½ðT � T1Þjseries � ðT � T1Þjexact
=ðT � T1Þjexact: ð36Þ

Based on the data in Fig. 4(b), for a high degree of ac-

curacy while keeping the number of terms small, it is

important to find techniques such as time partitioning

[Chapter 5]11, to accelerate the convergence.

Example 3. This example demonstrates the peculiarities

of a three-dimensional transient solution. To maintain

the brevity of the presentation, input data in Example 1

are slightly modified. Furthermore, it is hypothesized

that the surface at x ¼ a is cooled by a fluid so that the

x ¼ a surface remains at a constant temperature equal

to the ambient temperature T1; however, the surfaces

at x ¼ 0, z ¼ 0, and z ¼ d remain insulated. The heat

transfer coefficients h1 and h2 remain at those values

specified in Example 1. The temperature field becomes

three-dimensional assuming the y ¼ 0 surface receives

heat flux over a small area bounded by bounded by the

Fig. 4. (a) Steady-state dimensionless temperature solution from Eq. (34) along y-axis for different heated areas over y ¼ 0 surface,

when a1=a ¼ d1=d, see Example 2. (b) Absolute value of the deviation e, Eq. (36), using 10, 20, 50, 100, 200, 500, 1000, and 2000 terms

in the one-dimensional series solution, Eq. (34), when a1=a ¼ d1=d ¼ 1.
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lines x ¼ 0; a1 and z ¼ 0; d1 as in Example 2. Eq. (34) in

Example 2 would describe the temperature distribution

if

VmðxÞ ¼ 2 cos½ðmþ 1=2Þpx=a
 sin½ðmþ 1=2Þpa1=a

=½ðmþ 1=2Þp
:

ð37Þ

When a1 ¼ 0:5a and d1 ¼ 0:5d, the dimensionless tem-

perature kðT � T1Þ=bq1 along a line, with coordinates

x ¼ 0 and z ¼ 0, is plotted as a function of y in Fig. 5.

Each line in the figure is for a different Fourier num-

ber, Fo ¼ a1y t=b2. Fig. 5 is prepared in a similar man-

ner, except the data are plotted as a function of y when

x ¼ 0 and z ¼ d1. Figs. 5 and 6 clearly show the three-

dimensional effect, as temperatures in Fig. 6 are less

than those shown in Fig. 5. This example reveals some

computational peculiarities when bm and mn are large

and gmnp is imaginary. A discussion is in the following

section.

7. Remarks

As stated earlier, the computation of eigenvalues re-

quires extreme care. Indeed, the computation of tem-

perature also requires extreme care when a spatial

eigenvalue c or g becomes imaginary. In this case, since

a1y < a2y , then gmnp can become imaginary when bm and/

or mn are larger than 1. At large bm and/or mn values, the
functions sinðgmnpyÞ and cosðgmnpyÞ become � sinh

ðjgmnpjyÞ=i and coshðjgmnpjyÞ as gmnp becomes imaginary;

therefore, these functions grow exponentially and can

produce undesirable round-off errors. As demonstrated

in Aviles-Ramos et al. [9], the terms with imaginary

Fig. 5. Temperature, in Example 3, as a function of y=b when x ¼ 0 and z ¼ 0 for different Fourier numbers a1y t=b2.

Fig. 6. Temperature, in Example 3, as a function of y=b when x ¼ 0 and z ¼ 0:5d for different Fourier numbers a1y t=b2.
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spatial eigenvalues must be included in the solution;

otherwise the computations would yield erroneous re-

sults. The condition exists when a1y > a2y and the spatial

eigenvalue cmnp is imaginary. In this latter case, the re-

medial steps are simple as the entries for A, and B in

Table 1(a) or (b) can be scaled down using a factor, i.e.,

exp½�jcmnpjb
.
When gmnp is imaginary, the computation of eigen-

values requires some attention. However, the numerical

computation of temperature, using the data for this ex-

ample, also produced severe numerical errors when y > b,
mainly due to standard numerical truncation within the

computer processor. The error becomes severe when cal-

culating Y2;mnpðyÞ and its contribution to the norm. To

overcome problems associated with the truncation errors,

the method of computing Y2;mnpðyÞ, when gmnp is imagi-

nary, should bemodified. Based onEq. (21), coefficients �CC
and �DD from Table 1(b), entry Y3J, are related, therefore,

when gmnp ¼ ijgmnpj, here i ¼
ffiffiffiffiffiffiffi
�1

p
, they are

�CCmnp ¼ cosðcmnpbÞ
"

þ h1
k1ycmnp

 !
sinðcmnpbÞ

#

þ k1yRcmnp
h1

k1ycmnp

 !
cosðcmnpbÞ

"
� sinðcmnpbÞ

#

ð38aÞ

and

�DDmnp ¼ i �CCmnp
jgmnpj tanh½jgmnpjðc� bÞ
 þ h2=k2y
jgmnpj þ ðh2=k2yÞ tanh½jgmnpjðc� bÞ
 : ð38bÞ

Then, Eq. (14b) following substitution for D and other

appropriate algebraic steps yields

Y2;mnpðyÞ ¼ �CCmnp exp½�jgmnpjðy � bÞ

þ �CCmnpWðjgmnpjÞ sinh½jgmnpjðy � bÞ
; ð39aÞ

where

WðjgmnpjÞ ¼ 1

"
�

jgmnpj tanh½jgmnpjðc� bÞ
 þ h2=k2y
jgmnpj þ ðh2=k2yÞ tanh½jgmnpjðc� bÞ


#

ð39bÞ

Clearly, the term �CC is real and has a finite numerical

value and exp½�jgmnpjðy � bÞ
 varies between 0 and 1 as

jgmnpj increases, since y > b. Moreover, the term

WðjgmnpjÞ sinh½jgmnpjðy � bÞ
 rapidly becomes small as

jgmnpjb becomes large, e.g., jgmnpjb > 10. As shown

above, when y > b, Y2;mnpðyÞ ! 0 as jgmnpj ! 1; a de-

sirable feature to achieve convergence. In general, Eq.

(39a) should be used when gmnp is imaginary.

8. Conclusion

There are a few items one must consider when deal-

ing with problems of this type. In general, the spatial

eigenvalues for the solution perpendicular to the layers

can become imaginary within the region with higher

thermal diffusivity. Usually, for each set of bm and mn,
only the first few eigenvalues are imaginary and their

numbers and magnitudes increase as the number of

terms in x- and z-direction solutions increases. This

phenomenon can cause the magnitude of the function

f ðkÞ to become very large or very small. Also, as de-

scribed earlier, care must be exercised when computing

the function Y2;mnpðyÞ when gmnp is imaginary. Usually, it

is best to arrange the coordinate system so that a layer

Table 4

Computed temperature, (T � T1) �C, in Region 1 and a comparison with a solution for a semi-infinite bodya

y (cm) t (s)

0.001 0.005 0.01 0.05 0.1

0.00 574.8736 150.5034 102.4516 43.11266 29.52803

(648.1511) (150.5034) (102.4516) (43.11266) (29.52803)

0.05 )0.946044 2.394879 14.52021 30.45890 25.33503

(0.000000) (2.394879) (14.52021) (30.45890) (25.33503)

0.10 )0.786541 0.000013 0.039863 9.908667 14.66315

(0.000000) (0.000013) (0.039863) (9.908667) (14.66325)

0.15 )0.613663 0.000000 0.000002 1.501637 5.776373

(0.000000) (0.000000) (0.000002) (1.501638) (5.777962)

0.20 )0.401243 0.000000 0.000000 0.106381 1.537475

(0.000000) (0.000000) (0.000000) (0.106409) (1.555826)

0.25 )0.160965 0.000000 0.000000 0.001742 0.141438

(0.000000) (0.000000) (0.000000) (0.003531) (0.286766)

aThe numbers inside parentheses are solutions for a semi-infinite body.
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with the largest thermal diffusivity is Region 1, between

y ¼ 0 to b. However, to study the behavior of this so-

lution technique, Region 1 in Examples 1–3 has the

smaller thermal diffusivity.

In principle, to provide the best accuracy at very

small or very large time, a convergence-accelerating

scheme, such as time partitioning is needed. For in-

stance, when heating begins at y ¼ 0 surface, one can

consider Region 1 as a semi-infinite solid when

a1t=b2 6 0:027 and obtain an accurate solution using

time partitioning, as described in Example 1. A similar

procedure may be used when heating begins at the y ¼ c
surface. In this case, Region 2 may be considered as a

semi-infinite body when a2t=ðc� bÞ2 6 0:027. However,

to perform time partitioning, when there is an abrupt

temperature change at the interface, where y ¼ b, a

different equation is needed. The temperature solution in

an infinite body having two layers, introduced in 7, is

suitable for a time-partitioning task. When there are two

or more nonhomogeneous boundary conditions, time

partitioning can be used for each surface separately.

There are other challenges remaining that deserve sep-

arate studies.
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